24小时接单的黑客网站

破解教程,破解软件,破解补丁,破解密码,破解软件下

数列破解公式(数学数列解题技巧公式)

本文目录一览:

超简单等差数列问题

S20-S10等于前中间是个数字之和,前十个数字之和是12,中间10个数字之和是5,因此这是等比递减数列,则后十个数字之和是-2.因此S30等于三组数字之和等于15

数列公式大全啊

等差数列的通项公式为:an=a1+(n-1)d

或an=am+(n-m)d

前n项和公式为:Sn=na1+n(n-1)d/2或Sn=(a1+an)n/2

若m+n=p+q则:存在am+an=ap+aq

若m+n=2p则:am+an=2ap

以上n均为正整数

文字翻译

第n项的值=首项+(项数-1)*公差

前n项的和=(首项+末项)*项数/2

公差=后项-前项

求高中数列的全部解题方法,公式

1利用待定常数法(重点)

例1 已知数列{n }中,若1=1,且n+1=3n-4(n=1,2,3,…). 求数列的通项公式n.

分析:若关系式是n+1=3n即为等比数列,因此考虑处理-4,若能化为n+1+x=3(n+x),则可构造等比数列{n+x}。

解:设n+1=3n-4恒等变形为n+1+x=3(n+x),即n+1=3n+2x,比较系数得:x=-2

n+1-2=3(n-2)

数列{n-2}是以1-2=-1为首项,公比为3的等比数列

n-2=(-1)3n-1 即n = -3n-1+2.

说明:给出一阶递推关系式形如 (n=1,2,…),A、B为常数,均可使用待定常数法,构造等比数列求出通项。

例2 已知数列{n }中,前n项和sn = 2n-3n, 求数列的通项公式n.

分析:已知等式中不是递推关系式,利用可转化为:n -2n-1=2,考虑3n-1是变量,引入待定常数x时,可设n- x=2(n-1- x),从而可构造等比数列。

解:1=s1=21-3 则1=3,

当n2时, =(2n-3n)-(2n-1-3n-1)即n-2n-1=2 ,设其可恒等变形为:n- x=2(n-1- x),(需要注意的是上面的指数,这是某种关系而不是固定的常数,故在恒等变形时需注意两边对应的关系,而不应该用X代替x,也可以不设“-”设“+”,结果是一样的。)

即 n -2n-1=x ,比较系数得:x=2.

n- 2=2(n-1- 2 )

数列{n- 2}是以1-6=-3为首项,公比为2的等比数列。

n- 2=(-3)2n-1

n=2-3.

说明:对于型如n=An-1+f(n)(A为常数)的一阶递推关系式。可利用待定常数法,构造等比数列;但须体现新数列相邻两项的规律性,设其可恒等变形为:n- xg(n)=A[n-1- xg(n-1)],若x存在,则可构造等比数列{ n- xg(n)}。

2 利用配方法

有些递推关系式经“配方”后,可体现等差(比)的规律性。

例3 设n0,1=5,当n2时,n+n-1=+6, 求数列的通项公式n。

分析:给出的递推关系式不能反映规律性,因此考虑去分母得:2n-2n-1=7+6(n-n-1),为体现规律性,变形为:2n-2n-1-6n+6n-1=7,即(n-3)2-(n-1-3)2=7.

解:由n+n-1=+6(n2)变形为:

2n-2n-1=7+6(n-n-1) 即(n-3)2-(n-1-3)2=7 (n2)

数列{ }是以(1-3)2=4为首项,公差为7的等差数列

=4+7(n-1)=7n-3,而n0

n=+3

说明:递推关系式中含有二次项、一次项时可考虑用配方法,揭示规律,构造等差(比)数列。

3 利用因式分解

有些递推关系式经因式分解后,可体现等差(比)的规律性。

例4已知数列{n }是首项为1的正项数列,且2n+1 + 3n+1 - 22n + 3n - nn+1=0求数列的通项公式n。

分析:由已知递推关系式,若配方,则无法配成完全平方或完全平方项之和。因此考虑用因式分解化简,寻求更实质的关系。可变形为:n+1(n+1 +3)+3n - nn+1 +n(-2n)=0。

解:由已知有:n+1(n+1 +3)+3n - nn+1 +n(-2 n)=0

(n+1 + n)[(n+1 + 3)-2n]=0,而n0

n+1 + 3 -2n=0,则利用待定常数法有(n+1 - 3)-2(n -3)=0

数列{n -3}是以1-3=-2为首项,公比为2的等比数列。

n-3 =(-2)2n-1 即n = 3-2n

说明:因式分解能达到化简的目的,使递推关系式简化,凸显规律性。

5 利用倒数

有些数列的递推关系式,经取倒数变形后,显现出规律性,可构造等比(差)数列。

例7 已知x1=1,x2=2,xn+ 2=,试求xn 。

分析:由递推关系式结构特征,易联想到倒数,即有 xn+2 =,从而

=,可构造等比数列。

解:对递推关系式两边取倒数得:=

可变形为=(-)()

数列{}是以=-为首项,公比为-的等比数列

=(-)(-= (n2)

=+()+()+ … +()

= 1 + (-)+(-)2 + … +

= + (n2)

= (n2) 而当n=1时亦满足。

= (n1)

说明:递推关系式中含有相邻两项之积与相邻两项之和的关系,可考虑取倒数(或化为分式),揭示规律,构造等比(差)数列。

例8已知数列{n }中,1=7,n2时,,求数列的通项公式n

分析:已知递推关系式右边为分式,取倒数后可化为:,未能反映规律,

但若能化为的关系,则可揭示规律;结合待定常数法,可确定A值。

解:由已知: (A0)即(2A+1≠0)

令,解得:A=1

已知关系式可恒等变形为,取倒数得: (n2)。

数列{}是以=为首项,公差为的等差数列。

= +(n-1),即 (n1)

说明:①例8中的递推关系式结构特征,亦易想到取倒数,但要灵活结合待定常数法,构造新数列,凸显等差的规律性。

②引入待定常数A是为了揭示变化的一致性(规律性),若A值存在,则可反映此变化规律。若A值不存在,则考虑其它变形。

6 利用换元

有些数列的递推关系式看起来较为复杂,但应用换元和化归思想后,可构造新数列进行代换,使递推关系式简化,从而揭示等差(比)规律,求出通项。

例9已知数列{an }中, 求(1981年第22届IMO预选题)。

分析:已知递推关系式中的较难处理,考虑用换元去掉根式,即令(0)。

解:令,则=5, 0,从而=

由已知递推关系式有:

化简得:=()2

2=, 由待定常数法得:2(-3)= -3

数列{-3}是以-3=2为首项,公比为的等比数列。

-3=2()n-1 即 = + 3

== (n1)

说明:对于递推关系式中较难处理的根式(比如不能反映相邻项的规律性),可采用换元去掉根式,化简递推关系式,揭示相邻项的变化规律,构造等比(差)数列。

例10 设=1,=(nN),求证:(1990年匈牙利奥林匹克试题)。

分析:比较已知与结论,应先求通项公式。待证的不等式中含有,且已知递推关系式中含有,据此两个信息,考虑进行三角代换,化简递推关系式。

证明:由已知0,引入数列{}使=tan,(0,)

由已知有:=

即=,又=1,,从而

即数列{}是以为首项,公比为的等比数列

= = , 而当x(0,)时,有tanxX

= tan

说明:对于递推关系式中,型如可考虑采用三角代换,化简递推关系式,揭示规律性。

总之,构造等比(差)数列关键在于抓住递推关系式的结构特征,选择恰当方法进行恒等变形,往往能揭示等比(差)规律,顺利求出通项。

参考文献:

⑴ 罗增儒. 递推数列.«高考到竞赛»(数学),陕西师范大学出版社,2002,7。

⑵ 陈传理、刘诗雄. 递推数列.«高中数学竞赛名师讲座»,华中师范大学出版社,1993,4。

⑶ 秦永. 递推数列.中学数学教学参考(陕西师范大学),2003(4)。

⑷ 樊友年.构造法解数列综合题. 中学数学教学参考,2002(7)。

  • 评论列表:
  •  假欢掩吻
     发布于 2022-06-27 03:33:50  回复该评论
  • :递推关系式中含有二次项、一次项时可考虑用配方法,揭示规律,构造等差(比)数列。3 利用因式分解有些递推关系式经因式分解后,可体现等差(比)的规律性。 例4已知数列{n }是首项为1的正项数列,且2n+1 + 3n+1 - 22n + 3n - nn+1=0求数列的通项公式n。 分析:由已知递
  •  瑰颈西奺
     发布于 2022-06-27 00:53:44  回复该评论
  • 性,因此考虑去分母得:2n-2n-1=7+6(n-n-1),为体现规律性,变形为:2n-2n-1-6n+6n-1=7,即(n-3)2-(n-1-3)2=7. 解:由n+n-1=+6(n2)变形为: 2n-2n-1=7+6(n-n-1) 即(n-3)2-(n-1-3)2
  •  辙弃羁客
     发布于 2022-06-27 01:28:18  回复该评论
  • 列{-3}是以-3=2为首项,公比为的等比数列。-3=2()n-1 即 = + 3== (n1) 说明:对于递推关系式中较难处理的根式(比如不能反映相邻项的规律性),可采用换元去掉根式,化简递推关系式,揭示相邻项的变化规律,
  •  晴枙午言
     发布于 2022-06-27 06:09:16  回复该评论
  • 设“+”,结果是一样的。) 即 n -2n-1=x ,比较系数得:x=2. n- 2=2(n-1- 2 ) 数列{n- 2}是以1-6=-3为首项,公比为2的等比数列。 n- 2=(-3)2n-1 n=2-3.说明:对于型如n
  •  绿邪囍神
     发布于 2022-06-26 22:21:10  回复该评论
  • { n- xg(n)}。 2 利用配方法 有些递推关系式经“配方”后,可体现等差(比)的规律性。 例3 设n0,1=5,当n2时,n+n-1=+6, 求数列的通项公

发表评论:

Powered By

Copyright Your WebSite.Some Rights Reserved.